Polynomials and harmonic functions on discrete groups
نویسندگان
چکیده
منابع مشابه
Harmonic Functions on Discrete Subgroups of Semi - Simple Lie Groups
A description of the Poisson boundary of random walks on discrete subgroups of semi-simple Lie groups in terms of geometric boundaries of the corresponding Riemannian symmetric spaces is given. Let G be a discrete group, and { a probability measure on G. A function f on G is called-harmonic if f(g) = P f(gx) (x) 8 g 2 G. The Poisson boundary of the pair (G;) is the probability space (?;) with a...
متن کاملBi-harmonic Functions on Groups
| Two natural deenitions of bi-harmonic functions on countable groups are shown to essentially coincide. Criteria of absence of non-constant bounded bi-harmonic functions are formulated. A description of these functions for free groups is given. Fonctions bi-harmoniques sur les groupes R esum e R esum e | Nous montrons l' equivalence essentielle de deux d eenitions naturelles des fonctions bi-h...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملHarmonic Functions on Multiplicative Graphs and Interpolation Polynomials
We construct examples of nonnegative harmonic functions on certain graded graphs: the Young lattice and its generalizations. Such functions first emerged in harmonic analysis on the infinite symmetric group. Our method relies on multivariate interpolation polynomials associated with Schur’s S and P functions and with Jack symmetric functions. As a by–product, we compute certain Selberg–type int...
متن کاملQuasiinvariants of Coxeter groups and m-harmonic polynomials
The space of m-harmonic polynomials related to a Coxeter group G and a multiplicity function m on its root system is defined as the joint kernel of the properly gauged invariant integrals of the corresponding generalised quantum Calogero-Moser problem. The relation between this space and the ring of all quantum integrals of this system (which is isomorphic to the ring of corresponding quasiinva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2016
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7050